Ligand binding to the ACBD6 protein regulates the acyl-CoA transferase reactions in membranes.
نویسندگان
چکیده
The binding determinants of the human acyl-CoA binding domain-containing protein (ACBD) 6 and its function in lipid renewal of membranes were investigated. ACBD6 binds acyl-CoAs of a chain length of 6 to 20 carbons. The stoichiometry of the association could not be fitted to a 1-to-1 model. Saturation of ACBD6 by C16:0-CoA required higher concentration than less abundant acyl-CoAs. In contrast to ACBD1 and ACBD3, ligand binding did not result in the dimerization of ACBD6. The presence of fatty acids affected the binding of C18:1-CoA to ACBD6, dependent on the length, the degree of unsaturation, and the stereoisomeric conformation of their aliphatic chain. ACBD1 and ACBD6 negatively affected the formation of phosphatidylcholine (PC) and phosphatidylethanolamine in the red blood cell membrane. The acylation rate of lysophosphatidylcholine into PC catalyzed by the red cell lysophosphatidylcholine-acyltransferase 1 protein was limited by the transfer of the acyl-CoA substrate from ACBD6 to the acyltransferase enzyme. These findings provide evidence that the binding properties of ACBD6 are adapted to prevent its constant saturation by the very abundant C16:0-CoA and protect membrane systems from the detergent nature of free acyl-CoAs by controlling their release to acyl-CoA-utilizing enzymes.
منابع مشابه
Eukaryotic Protein Recruitment into the Chlamydia Inclusion: Implications for Survival and Growth
Chlamydia trachomatis (Ct) is an obligate intracellular human pathogen that multiplies within a parasitophorous vacuole called an inclusion. We report that the location of several host-cell proteins present in the cytosol, the nucleus, and membranes was altered during Ct development. The acyl-CoA synthetase enzyme ACSL3 and the soluble acyl-CoA binding protein ACBD6 were mobilized from organell...
متن کاملCharacterization of an acyl-coenzyme A binding protein predominantly expressed in human primitive progenitor cells.
Human acyl-coenzyme A binding domain-containing member 6 (ACBD6) is a modular protein that carries an acyl-CoA binding domain at its N terminus and two ankyrin motifs at its C terminus. ACBD6 binds long-chain acyl-CoAs with a strong preference for unsaturated, C18:1-CoA and C20:4-CoA, over saturated, C16:0-CoA, acyl species. Deletion of the C terminus, which is not conserved among the members o...
متن کاملRemodeling of host phosphatidylcholine by Chlamydia acyltransferase is regulated by acyl-CoA binding protein ACBD6 associated with lipid droplets
The bacterial human pathogen Chlamydia trachomatis invades cells as an infectious elementary body (EB). The EB is internalized into a vacuole that is hidden from the host defense mechanism, and is modified to sustain the development of the replicative reticulate body (RB). Inside this parasitophorous compartment, called the inclusion, the pathogen survives supported by an active exchange of nut...
متن کاملCrystallographic and mass spectrometric analyses of a tandem GNAT protein from the clavulanic acid biosynthesis pathway.
(3R,5R)-Clavulanic acid (CA) is a clinically important inhibitor of Class A beta-lactamases. Sequence comparisons suggest that orf14 of the clavulanic acid biosynthesis gene cluster encodes for an acetyl transferase (CBG). Crystallographic studies reveal CBG to be a member of the emerging structural subfamily of tandem Gcn5-related acetyl transferase (GNAT) proteins. Two crystal forms (C2 and P...
متن کاملThe effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of lipid research
دوره 56 10 شماره
صفحات -
تاریخ انتشار 2015